|
proc — process information pseudo-filesystem
The proc
filesystem is a
pseudo-filesystem which provides an interface to kernel data
structures. It is commonly mounted at /proc
. Most of it is read-only, but some
files allow kernel variables to be changed.
The following list describes many of the files and
directories under the /proc
hierarchy.
/proc/[pid]
There is a numerical subdirectory for each running process; the subdirectory is named by the process ID. Each such subdirectory contains the following pseudo-files and directories.
/proc/[pid]/auxv (since
2.6.0-test7)
This contains the contents of the ELF interpreter information passed to the process at exec time. The format is one unsigned long ID plus one unsigned long value for each entry. The last entry contains two zeros.
/proc/[pid]/cgroup
(since Linux
2.6.24)This file describes control groups to which the process/task belongs. For each cgroup hierarchy there is one entry containing colon-separated fields of the form:
5:cpuacct,cpu,cpuset:/daemons
The colon-separated fields are, from left to right:
hierarchy ID number
set of subsystems bound to the hierarchy
control group in the hierarchy to which the process belongs
This file is present only if the CONFIG_CGROUPS
kernel configuration
option is enabled.
/proc/[pid]/cmdline
This holds the complete command line for the process, unless the process is a zombie. In the latter case, there is nothing in this file: that is, a read on this file will return 0 characters. The command-line arguments appear in this file as a set of strings separated by null bytes ('\0'), with a further null byte after the last string.
/proc/[pid]/coredump_filter (since kernel
2.6.23)
See core(5).
/proc/[pid]/cpuset (since kernel
2.6.12)
See cpuset(7).
/proc/[pid]/cwd
This is a symbolic link to the current working directory of the process. To find out the current working directory of process 20, for instance, you can do this:
$ cd /proc/20/cwd; /bin/pwd
Note that the pwd command is often a shell built-in, and might not work properly. In bash(1), you may use pwd −P.
In a multithreaded process, the contents of this symbolic link are not available if the main thread has already terminated (typically by calling pthread_exit(3)).
/proc/[pid]/environ
This file contains the environment for the process. The entries are separated by null bytes ('\0'), and there may be a null byte at the end. Thus, to print out the environment of process 1, you would do:
$ strings /proc/1/environ
/proc/[pid]/exe
Under Linux 2.2 and later, this file is a symbolic
link containing the actual pathname of the executed
command. This symbolic link can be dereferenced
normally; attempting to open it will open the
executable. You can even type /proc/[pid]/exe
to run another copy
of the same executable as is being run by process
[pid]. In a multithreaded process, the contents of this
symbolic link are not available if the main thread has
already terminated (typically by calling pthread_exit(3)).
Under Linux 2.0 and earlier /proc/[pid]/exe
is a pointer to the
binary which was executed, and appears as a symbolic
link. A readlink(2) call on
this file under Linux 2.0 returns a string in the
format:
[device]:inode
For example, [0301]:1502 would be inode 1502 on device major 03 (IDE, MFM, etc. drives) minor 01 (first partition on the first drive).
find(1) with the
−inum
option can be
used to locate the file.
/proc/[pid]/fd/
This is a subdirectory containing one entry for each file which the process has open, named by its file descriptor, and which is a symbolic link to the actual file. Thus, 0 is standard input, 1 standard output, 2 standard error, etc.
For file descriptors for pipes and sockets, the entries will be symbolic links whose content is the file type with the inode. A readlink(2) call on this file returns a string in the format:
type:[inode]
For example, socket:[2248868]
will
be a socket and its inode is 2248868. For sockets, that
inode can be used to find more information in one of
the files under /proc/net/
.
For file descriptors that have no corresponding inode (e.g., file descriptors produced by epoll_create(2), eventfd(2), inotify_init(2), signalfd(2), and timerfd(2)), the entry will be a symbolic link with contents of the form
anon_inode:<file-type>
In some cases, the file-type
is surrounded
by square brackets.
For example, an epoll file descriptor will have a
symbolic link whose content is the string anon_inode:[eventpoll]
.
In a multithreaded process, the contents of this directory are not available if the main thread has already terminated (typically by calling pthread_exit(3)).
Programs that will take a filename as a command-line
argument, but will not take input from standard input
if no argument is supplied, or that write to a file
named as a command-line argument, but will not send
their output to standard output if no argument is
supplied, can nevertheless be made to use standard
input or standard out using /proc/[pid]/fd
. For example, assuming
that −i
is the flag
designating an input file and −o
is the flag designating an
output file:
$ foobar −i /proc/self/fd/0 −o /proc/self/fd/1 ...
and you have a working filter.
/proc/self/fd/N
is
approximately the same as /dev/fd/N
in some UNIX and UNIX-like
systems. Most Linux MAKEDEV scripts symbolically link
/dev/fd
to /proc/self/fd
, in fact.
Most systems provide symbolic links /dev/stdin
, /dev/stdout
, and /dev/stderr
, which respectively link
to the files 0
,
1
, and 2
in /proc/self/fd
. Thus the example
command above could be written as:
$ foobar −i /dev/stdin −o /dev/stdout ...
/proc/[pid]/fdinfo/ (since kernel
2.6.22)
This is a subdirectory containing one entry for each file which the process has open, named by its file descriptor. The contents of each file can be read to obtain information about the corresponding file descriptor, for example:
$ cat /proc/12015/fdinfo/4 pos: 1000 flags: 01002002
The pos
field is a
decimal number showing the current file offset. The
flags
field is an octal
number that displays the file access mode and file
status flags (see open(2)).
The files in this directory are readable only by the owner of the process.
/proc/[pid]/io (since kernel
2.6.20)
This file contains I/O statistics for the process, for example:
# cat /proc/3828/io rchar: 323934931 wchar: 323929600 syscr: 632687 syscw: 632675 read_bytes: 0 write_bytes: 323932160 cancelled_write_bytes: 0
The fields are as follows:
rchar
: characters readThe number of bytes which this task has caused to be read from storage. This is simply the sum of bytes which this process passed to read(2) and similar system calls. It includes things such as terminal I/O and is unaffected by whether or not actual physical disk I/O was required (the read might have been satisfied from pagecache).
wchar
: characters writtenThe number of bytes which this task has caused, or shall cause to be written to disk. Similar caveats apply here as with
rchar
.syscr
: read syscallsAttempt to count the number of read I/O operations—that is, system calls such as read(2) and pread(2).
syscw
: write syscallsAttempt to count the number of write I/O operations—that is, system calls such as write(2) and pwrite(2).
read_bytes
: bytes readAttempt to count the number of bytes which this process really did cause to be fetched from the storage layer. This is accurate for block-backed filesystems.
write_bytes
: bytes writtenAttempt to count the number of bytes which this process caused to be sent to the storage layer.
cancelled_write_bytes
:The big inaccuracy here is truncate. If a process writes 1MB to a file and then deletes the file, it will in fact perform no writeout. But it will have been accounted as having caused 1MB of write. In other words: this field represents the number of bytes which this process caused to not happen, by truncating pagecache. A task can cause "negative" I/O too. If this task truncates some dirty pagecache, some I/O which another task has been accounted for (in its
write_bytes
) will not be happening.
Note
: In the current
implementation, things are a bit racy on 32-bit
systems: if process A reads process B's /proc/[pid]/io
while process B is
updating one of these 64-bit counters, process A could
see an intermediate result.
/proc/[pid]/limits (since kernel
2.6.24)
This file displays the soft limit, hard limit, and units of measurement for each of the process's resource limits (see getrlimit(2)). Up to and including Linux 2.6.35, this file is protected to allow reading only by the real UID of the process. Since Linux 2.6.36, this file is readable by all users on the system.
/proc/[pid]/map_files/ (since kernel
3.3)
This subdirectory contains entries corresponding to memory-mapped files (see mmap(2)). Entries are named by memory region start and end address pair (expressed as hexadecimal numbers), and are symbolic links to the mapped files themselves. Here is an example, with the output wrapped and reformatted to fit on an 80-column display:
$ ls -l /proc/self/map_files/ lr−−−−−−−−. 1 root root 64 Apr 16 21:31 3252e00000−3252e20000 −> /usr/lib64/ld-2.15.so ...
Although these entries are present for memory
regions that were mapped with the MAP_FILE
flag, the way anonymous
shared memory (regions created with the MAP_ANON | MAP_SHARED flags)
is implemented in Linux means that such regions also
appear on this directory. Here is an example where the
target file is the deleted /dev/zero
one:
lrw−−−−−−−. 1 root root 64 Apr 16 21:33 7fc075d2f000−7fc075e6f000 −> /dev/zero (deleted)
This directory appears only if the CONFIG_CHECKPOINT_RESTORE
kernel
configuration option is enabled.
/proc/[pid]/maps
A file containing the currently mapped memory regions and their access permissions. See mmap(2) for some further information about memory mappings.
The format of the file is:
address perms offset dev inode pathname 00400000-00452000 r-xp 00000000 08:02 173521 /usr/bin/dbus-daemon 00651000-00652000 r--p 00051000 08:02 173521 /usr/bin/dbus-daemon 00652000-00655000 rw-p 00052000 08:02 173521 /usr/bin/dbus-daemon 00e03000-00e24000 rw-p 00000000 00:00 0 [heap] 00e24000-011f7000 rw-p 00000000 00:00 0 [heap] ... 35b1800000-35b1820000 r-xp 00000000 08:02 135522 /usr/lib64/ld-2.15.so 35b1a1f000-35b1a20000 r--p 0001f000 08:02 135522 /usr/lib64/ld-2.15.so 35b1a20000-35b1a21000 rw-p 00020000 08:02 135522 /usr/lib64/ld-2.15.so 35b1a21000-35b1a22000 rw-p 00000000 00:00 0 35b1c00000-35b1dac000 r-xp 00000000 08:02 135870 /usr/lib64/libc-2.15.so 35b1dac000-35b1fac000 ---p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so 35b1fac000-35b1fb0000 r--p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so 35b1fb0000-35b1fb2000 rw-p 001b0000 08:02 135870 /usr/lib64/libc-2.15.so ... f2c6ff8c000-7f2c7078c000 rw-p 00000000 00:00 0 [stack:986] ... 7fffb2c0d000-7fffb2c2e000 rw-p 00000000 00:00 0 [stack] 7fffb2d48000-7fffb2d49000 r-xp 00000000 00:00 0 [vdso]
The address
field is
the address space in the process that the mapping
occupies. The perms
field
is a set of permissions:
r = read w = write x = execute s = shared p = private (copy on write)
The offset
field is the
offset into the file/whatever; dev
is the device (major:minor);
inode
is the inode on that
device. 0 indicates that no inode is associated with
the memory region, as would be the case with BSS
(uninitialized data).
The pathname
field will
usually be the file that is backing the mapping. For
ELF files, you can easily coordinate with the
offset
field by looking at
the Offset field in the ELF program headers
(readelf
−l).
There are additional helpful pseudo-paths:
[stack]
The initial process's (also known as the main thread's) stack.
[stack:<tid>]
(since Linux 3.4)A thread's stack (where the
<tid>
is a thread ID). It corresponds to the/proc/[pid]/task/[tid]/
path.[vdso]
The virtual dynamically linked shared object.
[heap]
The process's heap.
If the pathname
field
is blank, this is an anonymous mapping as obtained via
the mmap(2) function.
There is no easy way to coordinate this back to a
process's source, short of running it through
gdb(1), strace(1), or
similar.
Under Linux 2.0 there is no field giving pathname.
/proc/[pid]/mem
This file can be used to access the pages of a process's memory through open(2), read(2), and lseek(2).
/proc/[pid]/mountinfo
(since Linux
2.6.26)This file contains information about mount points. It contains lines of the form:
36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue (1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)
The numbers in parentheses are labels for the descriptions below:
- (1)
mount ID: unique identifier of the mount (may be reused after umount(2)).
- (2)
parent ID: ID of parent mount (or of self for the top of the mount tree).
- (3)
major:minor: value of
st_dev
for files on filesystem (see stat(2)).- (4)
root: root of the mount within the filesystem.
- (5)
mount point: mount point relative to the process's root.
- (6)
mount options: per-mount options.
- (7)
optional fields: zero or more fields of the form "tag[:value]".
- (8)
separator: marks the end of the optional fields.
- (9)
filesystem type: name of filesystem in the form "type[.subtype]".
- (10)
mount source: filesystem-specific information or "none".
- (11)
super options: per-super block options.
Parsers should ignore all unrecognized optional fields. Currently the possible optional fields are:
- shared:X
mount is shared in peer group X
- master:X
mount is slave to peer group X
- propagate_from:X
mount is slave and receives propagation from peer group X (*)
unbindable
mount is unbindable
(*) X is the closest dominant peer group under the process's root. If X is the immediate master of the mount, or if there is no dominant peer group under the same root, then only the "master:X" field is present and not the "propagate_from:X" field.
For more information on mount propagation see:
Documentation/filesystems/sharedsubtree.txt
in the Linux kernel source tree.
/proc/[pid]/mounts
(since Linux
2.4.19)This is a list of all the filesystems currently mounted in the process's mount namespace. The format of this file is documented in fstab(5). Since kernel version 2.6.15, this file is pollable: after opening the file for reading, a change in this file (i.e., a filesystem mount or unmount) causes select(2) to mark the file descriptor as readable, and poll(2) and epoll_wait(2) mark the file as having an error condition.
/proc/[pid]/mountstats
(since Linux
2.6.17)This file exports information (statistics, configuration information) about the mount points in the process's name space. Lines in this file have the form:
device /dev/sda7 mounted on /home with fstype ext3 [statistics] ( 1 ) ( 2 ) (3 ) (4)
The fields in each line are:
- (1)
The name of the mounted device (or "nodevice" if there is no corresponding device).
- (2)
The mount point within the filesystem tree.
- (3)
The filesystem type.
- (4)
Optional statistics and configuration information. Currently (as at Linux 2.6.26), only NFS filesystems export information via this field.
This file is readable only by the owner of the process.
/proc/[pid]/ns/
(since Linux
3.0)This is a subdirectory containing one entry for each namespace that supports being manipulated by setns(2). For information about namespaces, see clone(2).
/proc/[pid]/ns/ipc
(since Linux
3.0)Bind mounting this file (see mount(2)) to
somewhere else in the filesystem keeps the IPC
namespace of the process specified by pid
alive even if all processes
currently in the namespace terminate.
Opening this file returns a file handle for the IPC
namespace of the process specified by pid
. As long as this file descriptor
remains open, the IPC namespace will remain alive, even
if all processes in the namespace terminate. The file
descriptor can be passed to setns(2).
/proc/[pid]/ns/net
(since Linux
3.0)Bind mounting this file (see mount(2)) to
somewhere else in the filesystem keeps the network
namespace of the process specified by pid
alive even if all processes in the
namespace terminate.
Opening this file returns a file handle for the
network namespace of the process specified by
pid
. As long as this file
descriptor remains open, the network namespace will
remain alive, even if all processes in the namespace
terminate. The file descriptor can be passed to
setns(2).
/proc/[pid]/ns/uts
(since Linux
3.0)Bind mounting this file (see mount(2)) to
somewhere else in the filesystem keeps the UTS
namespace of the process specified by pid
alive even if all processes
currently in the namespace terminate.
Opening this file returns a file handle for the UTS
namespace of the process specified by pid
. As long as this file descriptor
remains open, the UTS namespace will remain alive, even
if all processes in the namespace terminate. The file
descriptor can be passed to setns(2).
/proc/[pid]/numa_maps
(since Linux
2.6.14)See numa(7).
/proc/[pid]/oom_adj
(since Linux
2.6.11)This file can be used to adjust the score used to
select which process should be killed in an
out-of-memory (OOM) situation. The kernel uses this
value for a bit-shift operation of the process's
oom_score
value: valid
values are in the range −16 to +15, plus the
special value −17, which disables OOM-killing
altogether for this process. A positive score increases
the likelihood of this process being killed by the
OOM-killer; a negative score decreases the
likelihood.
The default value for this file is 0; a new process
inherits its parent's oom_adj
setting. A process must be
privileged (CAP_SYS_RESOURCE
) to update this
file.
Since Linux 2.6.36, use of this file is deprecated
in favor of /proc/[pid]/oom_score_adj
.
/proc/[pid]/oom_score
(since Linux
2.6.11)This file displays the current score that the kernel gives to this process for the purpose of selecting a process for the OOM-killer. A higher score means that the process is more likely to be selected by the OOM-killer. The basis for this score is the amount of memory used by the process, with increases (+) or decreases (−) for factors including:
whether the process creates a lot of children using fork(2) (+);
whether the process has been running a long time, or has used a lot of CPU time (−);
whether the process has a low nice value (i.e., > 0) (+);
whether the process is privileged (−); and
whether the process is making direct hardware access (−).
The oom_score
also
reflects the adjustment specified by the oom_score_adj
or oom_adj
setting for the process.
/proc/[pid]/oom_score_adj
(since Linux
2.6.36)This file can be used to adjust the badness heuristic used to select which process gets killed in out-of-memory conditions.
The badness heuristic assigns a value to each candidate task ranging from 0 (never kill) to 1000 (always kill) to determine which process is targeted. The units are roughly a proportion along that range of allowed memory the process may allocate from, based on an estimation of its current memory and swap use. For example, if a task is using all allowed memory, its badness score will be 1000. If it is using half of its allowed memory, its score will be 500.
There is an additional factor included in the badness score: root processes are given 3% extra memory over other tasks.
The amount of "allowed" memory depends on the context in which the OOM-killer was called. If it is due to the memory assigned to the allocating task's cpuset being exhausted, the allowed memory represents the set of mems assigned to that cpuset (see cpuset(7)). If it is due to a mempolicy's node(s) being exhausted, the allowed memory represents the set of mempolicy nodes. If it is due to a memory limit (or swap limit) being reached, the allowed memory is that configured limit. Finally, if it is due to the entire system being out of memory, the allowed memory represents all allocatable resources.
The value of oom_score_adj
is added to the badness
score before it is used to determine which task to
kill. Acceptable values range from −1000
(OOM_SCORE_ADJ_MIN) to +1000 (OOM_SCORE_ADJ_MAX). This
allows user space to control the preference for
OOM-killing, ranging from always preferring a certain
task or completely disabling it from OOM-killing. The
lowest possible value, −1000, is equivalent to
disabling OOM-killing entirely for that task, since it
will always report a badness score of 0.
Consequently, it is very simple for user space to
define the amount of memory to consider for each task.
Setting a oom_score_adj
value of +500, for example, is roughly equivalent to
allowing the remainder of tasks sharing the same
system, cpuset, mempolicy, or memory controller
resources to use at least 50% more memory. A value of
−500, on the other hand, would be roughly
equivalent to discounting 50% of the task's allowed
memory from being considered as scoring against the
task.
For backward compatibility with previous kernels,
/proc/[pid]/oom_adj
can
still be used to tune the badness score. Its value is
scaled linearly with oom_score_adj
.
Writing to /proc/[pid]/oom_score_adj
or
/proc/[pid]/oom_adj
will
change the other with its scaled value.
/proc/[pid]/root
UNIX and Linux support the idea of a per-process root of the filesystem, set by the chroot(2) system call. This file is a symbolic link that points to the process's root directory, and behaves as exe, fd/*, etc. do.
In a multithreaded process, the contents of this symbolic link are not available if the main thread has already terminated (typically by calling pthread_exit(3)).
/proc/[pid]/smaps
(since Linux
2.6.14)This file shows memory consumption for each of the process's mappings. For each of mappings there is a series of lines such as the following:
08048000-080bc000 r-xp 00000000 03:02 13130 /bin/bash Size: 464 kB Rss: 424 kB Shared_Clean: 424 kB Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 0 kB
The first of these lines shows the same information
as is displayed for the mapping in /proc/[pid]/maps
. The remaining lines
show the size of the mapping, the amount of the mapping
that is currently resident in RAM, the number of clean
and dirty shared pages in the mapping, and the number
of clean and dirty private pages in the mapping.
This file is present only if the CONFIG_MMU
kernel configuration
option is enabled.
/proc/[pid]/stat
Status information about the process. This is used
by ps(1). It is defined in
/usr/src/linux/fs/proc/array.c
.
The fields, in order, with their proper scanf(3) format specifiers, are:
pid
%d(1) The process ID.
comm
%s(2) The filename of the executable, in parentheses. This is visible whether or not the executable is swapped out.
state
%c(3) One character from the string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging.
ppid
%d(4) The PID of the parent.
pgrp
%d(5) The process group ID of the process.
session
%d(6) The session ID of the process.
tty_nr
%d(7) The controlling terminal of the process. (The minor device number is contained in the combination of bits 31 to 20 and 7 to 0; the major device number is in bits 15 to 8.)
tpgid
%d(8) The ID of the foreground process group of the controlling terminal of the process.
flags
%u (%lu before Linux 2.6.22)(9) The kernel flags word of the process. For bit meanings, see the PF_* defines in the Linux kernel source file
include/linux/sched.h
. Details depend on the kernel version.minflt
%lu(10) The number of minor faults the process has made which have not required loading a memory page from disk.
cminflt
%lu(11) The number of minor faults that the process's waited-for children have made.
majflt
%lu(12) The number of major faults the process has made which have required loading a memory page from disk.
cmajflt
%lu(13) The number of major faults that the process's waited-for children have made.
utime
%lu(14) Amount of time that this process has been scheduled in user mode, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)
). This includes guest time,guest_time
(time spent running a virtual CPU, see below), so that applications that are not aware of the guest time field do not lose that time from their calculations.stime
%lu(15) Amount of time that this process has been scheduled in kernel mode, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)
).cutime
%ld(16) Amount of time that this process's waited-for children have been scheduled in user mode, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)
). (See also times(2).) This includes guest time,cguest_time
(time spent running a virtual CPU, see below).cstime
%ld(17) Amount of time that this process's waited-for children have been scheduled in kernel mode, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)
).priority
%ld(18) (Explanation for Linux 2.6) For processes running a real-time scheduling policy (
policy
below; see sched_setscheduler(2)), this is the negated scheduling priority, minus one; that is, a number in the range −2 to −100, corresponding to real-time priorities 1 to 99. For processes running under a non-real-time scheduling policy, this is the raw nice value (setpriority(2)) as represented in the kernel. The kernel stores nice values as numbers in the range 0 (high) to 39 (low), corresponding to the user-visible nice range of −20 to 19.Before Linux 2.6, this was a scaled value based on the scheduler weighting given to this process.
nice
%ld(19) The nice value (see setpriority(2)), a value in the range 19 (low priority) to −20 (high priority).
num_threads
%ld(20) Number of threads in this process (since Linux 2.6). Before kernel 2.6, this field was hard coded to 0 as a placeholder for an earlier removed field.
itrealvalue
%ld(21) The time in jiffies before the next
SIGALRM
is sent to the process due to an interval timer. Since kernel 2.6.17, this field is no longer maintained, and is hard coded as 0.starttime
%llu (was %lu before Linux 2.6)(22) The time the process started after system boot. In kernels before Linux 2.6, this value was expressed in jiffies. Since Linux 2.6, the value is expressed in clock ticks (divide by
sysconf(_SC_CLK_TCK)
).vsize
%lu(23) Virtual memory size in bytes.
rss
%ld(24) Resident Set Size: number of pages the process has in real memory. This is just the pages which count toward text, data, or stack space. This does not include pages which have not been demand-loaded in, or which are swapped out.
rsslim
%lu(25) Current soft limit in bytes on the rss of the process; see the description of
RLIMIT_RSS
in getrlimit(2).startcode
%lu(26) The address above which program text can run.
endcode
%lu(27) The address below which program text can run.
startstack
%lu(28) The address of the start (i.e., bottom) of the stack.
kstkesp
%lu(29) The current value of ESP (stack pointer), as found in the kernel stack page for the process.
kstkeip
%lu(30) The current EIP (instruction pointer).
signal
%lu(31) The bitmap of pending signals, displayed as a decimal number. Obsolete, because it does not provide information on real-time signals; use
/proc/[pid]/status
instead.blocked
%lu(32) The bitmap of blocked signals, displayed as a decimal number. Obsolete, because it does not provide information on real-time signals; use
/proc/[pid]/status
instead.sigignore
%lu(33) The bitmap of ignored signals, displayed as a decimal number. Obsolete, because it does not provide information on real-time signals; use
/proc/[pid]/status
instead.sigcatch
%lu(34) The bitmap of caught signals, displayed as a decimal number. Obsolete, because it does not provide information on real-time signals; use
/proc/[pid]/status
instead.wchan
%lu(35) This is the "channel" in which the process is waiting. It is the address of a system call, and can be looked up in a namelist if you need a textual name. (If you have an up-to-date
/etc/psdatabase
, then try ps −l to see the WCHAN field in action.)nswap
%lu(36) Number of pages swapped (not maintained).
cnswap
%lu(37) Cumulative
nswap
for child processes (not maintained).exit_signal
%d (since Linux 2.1.22)(38) Signal to be sent to parent when we die.
processor
%d (since Linux 2.2.8)(39) CPU number last executed on.
rt_priority
%u (since Linux 2.5.19; was %lu before Linux 2.6.22)(40) Real-time scheduling priority, a number in the range 1 to 99 for processes scheduled under a real-time policy, or 0, for non-real-time processes (see sched_setscheduler(2)).
policy
%u (since Linux 2.5.19; was %lu before Linux 2.6.22)(41) Scheduling policy (see sched_setscheduler(2)). Decode using the SCHED_* constants in
linux/sched.h
.delayacct_blkio_ticks
%llu (since Linux 2.6.18)(42) Aggregated block I/O delays, measured in clock ticks (centiseconds).
guest_time
%lu (since Linux 2.6.24)(43) Guest time of the process (time spent running a virtual CPU for a guest operating system), measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)
).cguest_time
%ld (since Linux 2.6.24)(44) Guest time of the process's children, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)
).
/proc/[pid]/statm
Provides information about memory usage, measured in pages. The columns are:
size (1) total program size (same as VmSize in/proc/[pid]/status
) resident (2) resident set size (same as VmRSS in/proc/[pid]/status
) share (3) shared pages (i.e., backed by a file) text (4) text (code) lib (5) library (unused in Linux 2.6) data (6) data + stack dt (7) dirty pages (unused in Linux 2.6)
/proc/[pid]/status
Provides much of the information in /proc/[pid]/stat
and /proc/[pid]/statm
in a format that's
easier for humans to parse. Here's an example:
$ cat /proc/$$/status Name: bash State: S (sleeping) Tgid: 3515 Pid: 3515 PPid: 3452 TracerPid: 0 Uid: 1000 1000 1000 1000 Gid: 100 100 100 100 FDSize: 256 Groups: 16 33 100 VmPeak: 9136 kB VmSize: 7896 kB VmLck: 0 kB VmHWM: 7572 kB VmRSS: 6316 kB VmData: 5224 kB VmStk: 88 kB VmExe: 572 kB VmLib: 1708 kB VmPTE: 20 kB Threads: 1 SigQ: 0/3067 SigPnd: 0000000000000000 ShdPnd: 0000000000000000 SigBlk: 0000000000010000 SigIgn: 0000000000384004 SigCgt: 000000004b813efb CapInh: 0000000000000000 CapPrm: 0000000000000000 CapEff: 0000000000000000 CapBnd: ffffffffffffffff Cpus_allowed: 00000001 Cpus_allowed_list: 0 Mems_allowed: 1 Mems_allowed_list: 0 voluntary_ctxt_switches: 150 nonvoluntary_ctxt_switches: 545
The fields are as follows:
Name
: Command run by this process.
State
: Current state of the process. One of "R (running)", "S (sleeping)", "D (disk sleep)", "T (stopped)", "T (tracing stop)", "Z (zombie)", or "X (dead)".
Tgid
: Thread group ID (i.e., Process ID).
Pid
: Thread ID (see gettid(2)).
PPid
: PID of parent process.
TracerPid
: PID of process tracing this process (0 if not being traced).
Uid
,Gid
: Real, effective, saved set, and filesystem UIDs (GIDs).
FDSize
: Number of file descriptor slots currently allocated.
Groups
: Supplementary group list.
VmPeak
: Peak virtual memory size.
VmSize
: Virtual memory size.
VmLck
: Locked memory size (see mlock(3)).
VmHWM
: Peak resident set size ("high water mark").
VmRSS
: Resident set size.
VmData
,VmStk
,VmExe
: Size of data, stack, and text segments.
VmLib
: Shared library code size.
VmPTE
: Page table entries size (since Linux 2.6.10).
Threads
: Number of threads in process containing this thread.
SigQ
: This field contains two slash-separated numbers that relate to queued signals for the real user ID of this process. The first of these is the number of currently queued signals for this real user ID, and the second is the resource limit on the number of queued signals for this process (see the description ofRLIMIT_SIGPENDING
in getrlimit(2)).
SigPnd
,ShdPnd
: Number of signals pending for thread and for process as a whole (see pthreads(7) and signal(7)).
SigBlk
,SigIgn
,SigCgt
: Masks indicating signals being blocked, ignored, and caught (see signal(7)).
CapInh
,CapPrm
,CapEff
: Masks of capabilities enabled in inheritable, permitted, and effective sets (see capabilities(7)).
CapBnd
: Capability Bounding set (since kernel 2.6.26, see capabilities(7)).
Cpus_allowed
: Mask of CPUs on which this process may run (since Linux 2.6.24, see cpuset(7)).
Cpus_allowed_list
: Same as previous, but in "list format" (since Linux 2.6.26, see cpuset(7)).
Mems_allowed
: Mask of memory nodes allowed to this process (since Linux 2.6.24, see cpuset(7)).
Mems_allowed_list
: Same as previous, but in "list format" (since Linux 2.6.26, see cpuset(7)).
voluntary_context_switches
,nonvoluntary_context_switches
: Number of voluntary and involuntary context switches (since Linux 2.6.23).
/proc/[pid]/task
(since Linux
2.6.0-test6)This is a directory that contains one subdirectory
for each thread in the process. The name of each
subdirectory is the numerical thread ID ([tid]
) of the thread
(see gettid(2)). Within
each of these subdirectories, there is a set of files
with the same names and contents as under the
/proc/[pid]
directories.
For attributes that are shared by all threads, the
contents for each of the files under the task/[tid]
subdirectories will be the same as in the corresponding
file in the parent /proc/[pid]
directory (e.g., in a
multithreaded process, all of the task/[tid]/cwd
files
will have the same value as the /proc/[pid]/cwd
file in the parent
directory, since all of the threads in a process share
a working directory). For attributes that are distinct
for each thread, the corresponding files under
task/[tid]
may have different values (e.g., various fields in each
of the task/[tid]/status
files
may be different for each thread).
In a multithreaded process, the contents of the
/proc/[pid]/task
directory are not available if the main thread has
already terminated (typically by calling pthread_exit(3)).
/proc/apm
Advanced power management version and battery
information when CONFIG_APM
is defined at kernel
compilation time.
/proc/bus
Contains subdirectories for installed busses.
/proc/bus/pccard
Subdirectory for PCMCIA devices when CONFIG_PCMCIA
is set at kernel
compilation time.
/proc/bus/pccard/drivers
/proc/bus/pci
Contains various bus subdirectories and pseudo-files containing information about PCI busses, installed devices, and device drivers. Some of these files are not ASCII.
/proc/bus/pci/devices
Information about PCI devices. They may be accessed through lspci(8) and setpci(8).
/proc/cmdline
Arguments passed to the Linux kernel at boot time. Often done via a boot manager such as lilo(8) or grub(8).
/proc/config.gz
(since Linux
2.6)This file exposes the configuration options that
were used to build the currently running kernel, in the
same format as they would be shown in the .config
file that
resulted when configuring the kernel (using
make xconfig,
make config, or
similar). The file contents are compressed; view or
search them using zcat(1), zgrep(1), etc. As long as
no changes have been made to the following file, the
contents of /proc/config.gz
are the same as those
provided by :
cat /lib/modules/$(uname −r)/build/.config
/proc/config.gz
is
provided only if the kernel is configured with
CONFIG_IKCONFIG_PROC
.
/proc/cpuinfo
This is a collection of CPU and system architecture
dependent items, for each supported architecture a
different list. Two common entries are processor
which gives CPU number and
bogomips
; a system
constant that is calculated during kernel
initialization. SMP machines have information for each
CPU. The lscpu(1) command
gathers its information from this file.
/proc/devices
Text listing of major numbers and device groups. This can be used by MAKEDEV scripts for consistency with the kernel.
/proc/diskstats
(since Linux
2.5.69)This file contains disk I/O statistics for each disk
device. See the Linux kernel source file Documentation/iostats.txt
for further
information.
/proc/dma
This is a list of the registered ISA
DMA (direct memory access)
channels in use.
/proc/driver
Empty subdirectory.
/proc/execdomains
List of the execution domains (ABI personalities).
/proc/fb
Frame buffer information when CONFIG_FB
is defined during kernel
compilation.
/proc/filesystems
A text listing of the filesystems which are supported by the kernel, namely filesystems which were compiled into the kernel or whose kernel modules are currently loaded. (See also filesystems(5).) If a filesystem is marked with "nodev", this means that it does not require a block device to be mounted (e.g., virtual filesystem, network filesystem).
Incidentally, this file may be used by mount(8) when no filesystem is specified and it didn't manage to determine the filesystem type. Then filesystems contained in this file are tried (excepted those that are marked with "nodev").
/proc/fs
Empty subdirectory.
/proc/ide
This directory exists on systems with the IDE bus. There are directories for each IDE channel and attached device. Files include:
cache buffer size in KB capacity number of sectors driver driver version geometry physical and logical geometry identify in hexadecimal media media type model manufacturer's model number settings drive settings smart_thresholds in hexadecimal smart_values in hexadecimal
The hdparm(8) utility provides access to this information in a friendly format.
/proc/interrupts
This is used to record the number of interrupts per CPU per IO device. Since Linux 2.6.24, for the i386 and x86_64 architectures, at least, this also includes interrupts internal to the system (that is, not associated with a device as such), such as NMI (nonmaskable interrupt), LOC (local timer interrupt), and for SMP systems, TLB (TLB flush interrupt), RES (rescheduling interrupt), CAL (remote function call interrupt), and possibly others. Very easy to read formatting, done in ASCII.
/proc/iomem
I/O memory map in Linux 2.4.
/proc/ioports
This is a list of currently registered Input-Output port regions that are in use.
/proc/kallsyms
(since Linux
2.5.71)This holds the kernel exported symbol definitions
used by the modules
(X)
tools to dynamically link and bind loadable modules. In
Linux 2.5.47 and earlier, a similar file with slightly
different syntax was named ksyms
.
/proc/kcore
This file represents the physical memory of the
system and is stored in the ELF core file format. With
this pseudo-file, and an unstripped kernel
(/usr/src/linux/vmlinux
)
binary, GDB can be used to examine the current state of
any kernel data structures.
The total length of the file is the size of physical memory (RAM) plus 4KB.
/proc/kmsg
This file can be used instead of the syslog(2) system call to read kernel messages. A process must have superuser privileges to read this file, and only one process should read this file. This file should not be read if a syslog process is running which uses the syslog(2) system call facility to log kernel messages.
Information in this file is retrieved with the dmesg(1) program.
/proc/ksyms
(Linux 1.1.23-2.5.47)
See /proc/kallsyms
.
/proc/loadavg
The first three fields in this file are load average figures giving the number of jobs in the run queue (state R) or waiting for disk I/O (state D) averaged over 1, 5, and 15 minutes. They are the same as the load average numbers given by uptime(1) and other programs. The fourth field consists of two numbers separated by a slash (/). The first of these is the number of currently runnable kernel scheduling entities (processes, threads). The value after the slash is the number of kernel scheduling entities that currently exist on the system. The fifth field is the PID of the process that was most recently created on the system.
/proc/locks
This file shows current file locks (flock(2) and fcntl(2)) and leases (fcntl(2)).
/proc/malloc (only up to and including Linux
2.2)
This file is present only if CONFIG_DEBUG_MALLOC
was defined
during compilation.
/proc/meminfo
This file reports statistics about memory usage on the system. It is used by free(1) to report the amount of free and used memory (both physical and swap) on the system as well as the shared memory and buffers used by the kernel. Each line of the file consists of a parameter name, followed by a colon, the value of the parameter, and an option unit of measurement (e.g., "kB"). The list below describes the parameter names and the format specifier required to read the field value. Except as noted below, all of the fields have been present since at least Linux 2.6.0. Some fileds are displayed only if the kernel was configured with various options; those dependencies are noted in the list.
MemTotal
%luTotal usable RAM (i.e. physical RAM minus a few reserved bits and the kernel binary code).
MemFree
%luThe sum of
LowFree
+HighFree
.Buffers
%luRelatively temporary storage for raw disk blocks that shouldn't get tremendously large (20MB or so).
Cached
%luIn-memory cache for files read from the disk (the page cache). Doesn't include
SwapCached
.SwapCached
%luMemory that once was swapped out, is swapped back in but still also is in the swap file. (If memory pressure is high, these pages don't need to be swapped out again because they are already in the swap file. This saves I/O.)
Active
%luMemory that has been used more recently and usually not reclaimed unless absolutely necessary.
Inactive
%luMemory which has been less recently used. It is more eligible to be reclaimed for other purposes.
Active(anon)
%lu (since Linux 2.6.28)[To be documented.]
Inactive(anon)
%lu (since Linux 2.6.28)[To be documented.]
Active(file)
%lu (since Linux 2.6.28)[To be documented.]
Inactive(file)
%lu (since Linux 2.6.28)[To be documented.]
Unevictable
%lu (since Linux 2.6.28)(From Linux 2.6.28 to 2.6.30,
CONFIG_UNEVICTABLE_LRU
was required.) [To be documented.]Mlocked
%lu (since Linux 2.6.28)(From Linux 2.6.28 to 2.6.30,
CONFIG_UNEVICTABLE_LRU
was required.) [To be documented.]HighTotal
%lu(Starting with Linux 2.6.19,
CONFIG_HIGHMEM
is required.) Total amount of highmem. Highmem is all memory above ~860MB of physical memory. Highmem areas are for use by user-space programs, or for the page cache. The kernel must use tricks to access this memory, making it slower to access than lowmem.HighFree
%lu(Starting with Linux 2.6.19,
CONFIG_HIGHMEM
is required.) Amount of free highmem.LowTotal
%lu(Starting with Linux 2.6.19,
CONFIG_HIGHMEM
is required.) Total amount of lowmem. Lowmem is memory which can be used for everything that highmem can be used for, but it is also available for the kernel's use for its own data structures. Among many other things, it is where everything fromSlab
is allocated. Bad things happen when you're out of lowmem.LowFree
%lu(Starting with Linux 2.6.19,
CONFIG_HIGHMEM
is required.) Amount of free lowmem.MmapCopy
%lu (since Linux 2.6.29)(
CONFIG_MMU
is required.) [To be documented.]SwapTotal
%luTotal amount of swap space available.
SwapFree
%luAmount of swap space that is currently unused.
Dirty
%luMemory which is waiting to get written back to the disk.
Writeback
%luMemory which is actively being written back to the disk.
AnonPages
%lu (since Linux 2.6.18)Non-file backed pages mapped into user-space page tables.
Mapped
%luFiles which have been mmaped, such as libraries.
Shmem
%lu (since Linux 2.6.32)[To be documented.]
Slab
%luIn-kernel data structures cache.
SReclaimable
%lu (since Linux 2.6.19)Part of
Slab
, that might be reclaimed, such as caches.SUnreclaim
%lu (since Linux 2.6.19)Part of
Slab
, that cannot be reclaimed on memory pressure.KernelStack
%lu (since Linux 2.6.32)Amount of memory allocated to kernel stacks.
PageTables
%lu (since Linux 2.6.18)Amount of memory dedicated to the lowest level of page tables.
Quicklists
%lu (since Linux 2.6.27)(
CONFIG_QUICKLIST
is required.) [To be documented.]NFS_Unstable
%lu (since Linux 2.6.18)NFS pages sent to the server, but not yet committed to stable storage.
Bounce
%lu (since Linux 2.6.18)Memory used for block device "bounce buffers".
WritebackTmp
%lu (since Linux 2.6.26)Memory used by FUSE for temporary writeback buffers.
CommitLimit
%lu (since Linux 2.6.10)Based on the overcommit ratio ('vm.overcommit_ratio'), this is the total amount of memory currently available to be allocated on the system. This limit is adhered to only if strict overcommit accounting is enabled (mode 2 in
/proc/sys/vm/overcommit_ratio
). TheCommitLimit
is calculated using the following formula:CommitLimit = (overcommit_ratio * Physical RAM) + Swap
For example, on a system with 1GB of physical RAM and 7GB of swap with a
overcommit_ratio
of 30, this formula yields aCommitLimit
of 7.3GB. For more details, see the memory overcommit documentation in the kernel source fileDocumentation/vm/overcommit-accounting
.Committed_AS
%luThe amount of memory presently allocated on the system. The committed memory is a sum of all of the memory which has been allocated by processes, even if it has not been "used" by them as of yet. A process which allocates 1GB of memory (using malloc(3) or similar), but touches only 300MB of that memory will show up as using only 300MB of memory even if it has the address space allocated for the entire 1GB. This 1GB is memory which has been "committed" to by the VM and can be used at any time by the allocating application. With strict overcommit enabled on the system (mode 2
/proc/sys/vm/overcommit_memory
), allocations which would exceed theCommitLimit
(detailed above) will not be permitted. This is useful if one needs to guarantee that processes will not fail due to lack of memory once that memory has been successfully allocated.VmallocTotal
%luTotal size of vmalloc memory area.
VmallocUsed
%luAmount of vmalloc area which is used.
VmallocChunk
%luLargest contiguous block of vmalloc area which is free.
HardwareCorrupted
%lu (since Linux 2.6.32)(
CONFIG_MEMORY_FAILURE
is required.) [To be documented.]AnonHugePages
%lu (since Linux 2.6.38)(
CONFIG_TRANSPARENT_HUGEPAGE
is required.) Non-file backed huge pages mapped into user-space page tables.HugePages_Total
%lu(
CONFIG_HUGETLB_PAGE
is required.) The size of the pool of huge pages.HugePages_Free
%lu(
CONFIG_HUGETLB_PAGE
is required.) The number of huge pages in the pool that are not yet allocated.HugePages_Rsvd
%lu (since Linux 2.6.17)(
CONFIG_HUGETLB_PAGE
is required.) This is the number of huge pages for which a commitment to allocate from the pool has been made, but no allocation has yet been made. These reserved huge pages guarantee that an application will be able to allocate a huge page from the pool of huge pages at fault time.HugePages_Surp
%lu (since Linux 2.6.24)(
CONFIG_HUGETLB_PAGE
is required.) This is the number of huge pages in the pool above the value in/proc/sys/vm/nr_hugepages
. The maximum number of surplus huge pages is controlled by/proc/sys/vm/nr_overcommit_hugepages
.Hugepagesize
%lu(
CONFIG_HUGETLB_PAGE
is required.) The size of huge pages.
/proc/modules
A text list of the modules that have been loaded by the system. See also lsmod(8).
/proc/mounts
Before kernel 2.4.19, this file was a list of all
the filesystems currently mounted on the system. With
the introduction of per-process mount namespaces in
Linux 2.4.19, this file became a link to /proc/self/mounts
, which lists the
mount points of the process's own mount namespace. The
format of this file is documented in fstab(5).
/proc/mtrr
Memory Type Range Registers. See the Linux kernel
source file Documentation/mtrr.txt
for
details.
/proc/net
various net pseudo-files, all of which give the status of some part of the networking layer. These files contain ASCII structures and are, therefore, readable with cat(1). However, the standard netstat(8) suite provides much cleaner access to these files.
/proc/net/arp
This holds an ASCII readable dump of the kernel ARP table used for address resolutions. It will show both dynamically learned and preprogrammed ARP entries. The format is:
IP address
HW type
Flags
HW address
Mask
Device
192.168.0.50
0x1
0x2
00:50:BF:25:68:F3
*
eth0
192.168.0.250
0x1
0xc
00:00:00:00:00:00
*
eth0
Here "IP address" is the IPv4 address of the machine
and the "HW type" is the hardware type of the address
from RFC 826. The flags are the internal flags of the
ARP structure (as defined in /usr/include/linux/if_arp.h
) and the
"HW address" is the data link layer mapping for that IP
address if it is known.
/proc/net/dev
The dev pseudo-file contains network device status information. This gives the number of received and sent packets, the number of errors and collisions and other basic statistics. These are used by the ifconfig(8) program to report device status. The format is:
Interface
Receive
Transmit
bytes
packets
errs
drop
fifo
frame
compressed
multicast
bytes
packets
errs
drop
fifo
colls
carrier
compressed
lo:
2776770
11307
0
0
0
0
0
0
2776770
11307
0
0
0
0
0
0
eth0:
1215645
2751
0
0
0
0
0
0
1782404
4324
0
0
0
427
0
0
ppp0:
1622270
5552
1
0
0
0
0
0
354130
5669
0
0
0
0
0
0
tap0:
7714
81
0
0
0
0
0
0
7714
81
0
0
0
0
0
0
/proc/net/dev_mcast
Defined in /usr/src/linux/net/core/dev_mcast.c
:
indx
interface_name
dmi_u
dmi_g
dmi_address
2
eth0
1
0
01005e000001
3
eth1
1
0
01005e000001
4
eth2
1
0
01005e000001
/proc/net/igmp
Internet Group Management Protocol. Defined in
/usr/src/linux/net/core/igmp.c
.
/proc/net/rarp
This file uses the same format as the arp
file and contains the current
reverse mapping database used to provide rarp(8) reverse address
lookup services. If RARP is not configured into the
kernel, this file will not be present.
/proc/net/raw
Holds a dump of the RAW socket table. Much of the information is not of use apart from debugging. The "sl" value is the kernel hash slot for the socket, the "local_address" is the local address and protocol number pair. "St" is the internal status of the socket. The "tx_queue" and "rx_queue" are the outgoing and incoming data queue in terms of kernel memory usage. The "tr", "tm−>when", and "rexmits" fields are not used by RAW. The "uid" field holds the effective UID of the creator of the socket.
/proc/net/snmp
This file holds the ASCII data needed for the IP, ICMP, TCP, and UDP management information bases for an SNMP agent.
/proc/net/tcp
Holds a dump of the TCP socket table. Much of the information is not of use apart from debugging. The "sl" value is the kernel hash slot for the socket, the "local_address" is the local address and port number pair. The "rem_address" is the remote address and port number pair (if connected). "St" is the internal status of the socket. The "tx_queue" and "rx_queue" are the outgoing and incoming data queue in terms of kernel memory usage. The "tr", "tm−>when", and "rexmits" fields hold internal information of the kernel socket state and are only useful for debugging. The "uid" field holds the effective UID of the creator of the socket.
/proc/net/udp
Holds a dump of the UDP socket table. Much of the information is not of use apart from debugging. The "sl" value is the kernel hash slot for the socket, the "local_address" is the local address and port number pair. The "rem_address" is the remote address and port number pair (if connected). "St" is the internal status of the socket. The "tx_queue" and "rx_queue" are the outgoing and incoming data queue in terms of kernel memory usage. The "tr", "tm−>when", and "rexmits" fields are not used by UDP. The "uid" field holds the effective UID of the creator of the socket. The format is:
sl
local_address
rem_address
st
tx_queue rx_queue
tr rexmits
tm−>when
uid
1:
01642C89:0201
0C642C89:03FF
01
00000000:00000001
01:000071BA
00000000
0
1:
00000000:0801
00000000:0000
0A
00000000:00000000
00:00000000
6F000100
0
1:
00000000:0201
00000000:0000
0A
00000000:00000000
00:00000000
00000000
0
/proc/net/unix
Lists the UNIX domain sockets present within the system and their status. The format is:
Num |
RefCount |
Protocol |
Flags |
Type |
St |
Path |
0: |
00000002 |
00000000 |
00000000 |
0001 |
03 |
|
1: |
00000001 |
00000000 |
00010000 |
0001 |
01 |
/dev/printer |
Here "Num" is the kernel table slot number, "RefCount" is the number of users of the socket, "Protocol" is currently always 0, "Flags" represent the internal kernel flags holding the status of the socket. Currently, type is always "1" (UNIX domain datagram sockets are not yet supported in the kernel). "St" is the internal state of the socket and Path is the bound path (if any) of the socket.
/proc/partitions
Contains the major and minor numbers of each partition as well as the number of 1024-byte blocks and the partition name.
/proc/pci
This is a listing of all PCI devices found during kernel initialization and their configuration.
This file has been deprecated in favor of a new
/proc
interface for PCI
(/proc/bus/pci
). It
became optional in Linux 2.2 (available with
CONFIG_PCI_OLD_PROC
set
at kernel compilation). It became once more
nonoptionally enabled in Linux 2.4. Next, it was
deprecated in Linux 2.6 (still available with
CONFIG_PCI_LEGACY_PROC
set), and finally removed altogether since Linux
2.6.17.
/proc/profile
(since Linux
2.4)This file is present only if the kernel was booted
with the profile=1
command-line
option. It exposes kernel profiling information in a
binary format for use by readprofile(1). Writing
(e.g., an empty string) to this file resets the
profiling counters; on some architectures, writing a
binary integer "profiling multiplier" of size
sizeof(int)
sets the profiling interrupt frequency.
/proc/scsi
A directory with the scsi
mid-level pseudo-file and various
SCSI low-level driver directories, which contain a file
for each SCSI host in this system, all of which give
the status of some part of the SCSI IO subsystem. These
files contain ASCII structures and are, therefore,
readable with cat(1).
You can also write to some of the files to reconfigure the subsystem or switch certain features on or off.
/proc/scsi/scsi
This is a listing of all SCSI devices known to the
kernel. The listing is similar to the one seen during
bootup. scsi currently supports only the add-single-device
command which allows root to add a hotplugged device to
the list of known devices.
The command
echo 'scsi add-single-device 1 0 5 0' > /proc/scsi/scsi
will cause host scsi1 to scan on SCSI channel 0 for a device on ID 5 LUN 0. If there is already a device known on this address or the address is invalid, an error will be returned.
/proc/scsi/[drivername]
[drivername]
can
currently be NCR53c7xx, aha152x, aha1542, aha1740,
aic7xxx, buslogic, eata_dma, eata_pio, fdomain, in2000,
pas16, qlogic, scsi_debug, seagate, t128, u15-24f,
ultrastore, or wd7000. These directories show up for
all drivers that registered at least one SCSI HBA.
Every directory contains one file per registered host.
Every host-file is named after the number the host was
assigned during initialization.
Reading these files will usually show driver and host configuration, statistics, etc.
Writing to these files allows different things on
different hosts. For example, with the latency
and nolatency
commands, root can switch on
and off command latency measurement code in the
eata_dma driver. With the lockup
and unlock
commands, root can control bus
lockups simulated by the scsi_debug driver.
/proc/self
This directory refers to the process accessing the
/proc
filesystem, and is
identical to the /proc
directory named by the process ID of the same
process.
/proc/slabinfo
Information about kernel caches. Since Linux 2.6.16
this file is present only if the CONFIG_SLAB
kernel configuration
option is enabled. The columns in /proc/slabinfo
are:
cache-name num-active-objs total-objs object-size num-active-slabs total-slabs num-pages-per-slab
See slabinfo(5) for details.
/proc/stat
kernel/system statistics. Varies with architecture. Common entries include:
- cpu 3357 0 4313 1362393
The amount of time, measured in units of USER_HZ (1/100ths of a second on most architectures, use
sysconf(_SC_CLK_TCK)
to obtain the right value), that the system spent in various states:
user
(1) Time spent in user mode.
nice
(2) Time spent in user mode with low priority (nice).
system
(3) Time spent in system mode.
idle
(4) Time spent in the idle task. This value should be USER_HZ times the second entry in the
/proc/uptime
pseudo-file.iowait
(since Linux 2.5.41)(5) Time waiting for I/O to complete.
irq
(since Linux 2.6.0-test4)(6) Time servicing interrupts.
softirq
(since Linux 2.6.0-test4)(7) Time servicing softirqs.
steal
(since Linux 2.6.11)(8) Stolen time, which is the time spent in other operating systems when running in a virtualized environment
guest
(since Linux 2.6.24)(9) Time spent running a virtual CPU for guest operating systems under the control of the Linux kernel.
guest_nice
(since Linux 2.6.33)(10) Time spent running a niced guest (virtual CPU for guest operating systems under the control of the Linux kernel).
- page 5741 1808
The number of pages the system paged in and the number that were paged out (from disk).
- swap 1 0
The number of swap pages that have been brought in and out.
- intr 1462898
This line shows counts of interrupts serviced since boot time, for each of the possible system interrupts. The first column is the total of all interrupts serviced; each subsequent column is the total for a particular interrupt.
- disk_io: (2,0):(31,30,5764,1,2) (3,0):...
(major,disk_idx):(noinfo, read_io_ops, blks_read, write_io_ops, blks_written)
(Linux 2.4 only)
- ctxt 115315
The number of context switches that the system underwent.
- btime 769041601
boot time, in seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).
- processes 86031
Number of forks since boot.
- procs_running 6
Number of processes in runnable state. (Linux 2.5.45 onward.)
- procs_blocked 2
Number of processes blocked waiting for I/O to complete. (Linux 2.5.45 onward.)
/proc/swaps
Swap areas in use. See also swapon(8).
/proc/sys
This directory (present since 1.3.57) contains a
number of files and subdirectories corresponding to
kernel variables. These variables can be read and
sometimes modified using the /proc
filesystem, and the
(deprecated) sysctl(2) system
call.
/proc/sys/abi
(since Linux
2.4.10)This directory may contain files with application
binary information. See the Linux kernel source file
Documentation/sysctl/abi.txt
for more
information.
/proc/sys/debug
This directory may be empty.
/proc/sys/dev
This directory contains device-specific information
(e.g., dev/cdrom/info
). On
some systems, it may be empty.
/proc/sys/fs
This directory contains the files and subdirectories for kernel variables related to filesystems.
/proc/sys/fs/binfmt_misc
Documentation for files in this directory can be
found in the Linux kernel sources in Documentation/binfmt_misc.txt
.
/proc/sys/fs/dentry-state
(since Linux
2.2)This file contains information about the status of
the directory cache (dcache). The file contains six
numbers, nr_dentry
,
nr_unused
, age_limit
(age in seconds),
want_pages
(pages
requested by system) and two dummy values.
nr_dentry
is the number of allocated dentries (dcache entries). This field is unused in Linux 2.2.
nr_unused
is the number of unused dentries.
age_limit
is the age in seconds after which dcache entries can be reclaimed when memory is short.
want_pages
is nonzero when the kernel has called shrink_dcache_pages() and the dcache isn't pruned yet.
/proc/sys/fs/dir-notify-enable
This file can be used to disable or enable the
dnotify
interface
described in fcntl(2) on a
system-wide basis. A value of 0 in this file disables
the interface, and a value of 1 enables it.
/proc/sys/fs/dquot-max
This file shows the maximum number of cached disk quota entries. On some (2.4) systems, it is not present. If the number of free cached disk quota entries is very low and you have some awesome number of simultaneous system users, you might want to raise the limit.
/proc/sys/fs/dquot-nr
This file shows the number of allocated disk quota entries and the number of free disk quota entries.
/proc/sys/fs/epoll
(since Linux
2.6.28)This directory contains the file max_user_watches
, which can be used to
limit the amount of kernel memory consumed by the
epoll
interface. For
further details, see epoll(7).
/proc/sys/fs/file-max
This file defines a system-wide limit on the number
of open files for all processes. (See also setrlimit(2), which
can be used by a process to set the per-process limit,
RLIMIT_NOFILE
, on the
number of files it may open.) If you get lots of error
messages in the kernel log about running out of file
handles (look for "VFS: file-max limit <number>
reached"), try increasing this value:
echo 100000 > /proc/sys/fs/file-max
The kernel constant NR_OPEN
imposes an upper limit on the value that may be placed in
file-max
.
Privileged processes (CAP_SYS_ADMIN
) can override the file-max
limit.
/proc/sys/fs/file-nr
This (read-only) file contains three numbers: the
number of allocated file handles (i.e., the number of
files presently opened); the number of free file
handles; and the maximum number of file handles (i.e.,
the same value as /proc/sys/fs/file-max
). If the number
of allocated file handles is close to the maximum, you
should consider increasing the maximum. Before Linux
2.6, the kernel allocated file handles dynamically, but
it didn't free them again. Instead the free file
handles were kept in a list for reallocation; the "free
file handles" value indicates the size of that list. A
large number of free file handles indicates that there
was a past peak in the usage of open file handles.
Since Linux 2.6, the kernel does deallocate freed file
handles, and the "free file handles" value is always
zero.
/proc/sys/fs/inode-max (only present until
Linux 2.2)
This file contains the maximum number of in-memory
inodes. This value should be 3-4 times larger than the
value in file-max
, since
stdin
, stdout
and network sockets also need
an inode to handle them. When you regularly run out of
inodes, you need to increase this value.
Starting with Linux 2.4, there is no longer a static limit on the number of inodes, and this file is removed.
/proc/sys/fs/inode-nr
This file contains the first two values from
inode-state
.
/proc/sys/fs/inode-state
This file contains seven numbers: nr_inodes
, nr_free_inodes
, preshrink
, and four dummy values
(always zero).
nr_inodes
is the number
of inodes the system has allocated. nr_free_inodes
represents the number
of free inodes.
preshrink
is nonzero
when the nr_inodes
>
inode-max
and
the system needs to prune the inode list instead of
allocating more; since Linux 2.4, this field is a dummy
value (always zero).
/proc/sys/fs/inotify
(since Linux
2.6.13)This directory contains files max_queued_events
, max_user_instances
, and max_user_watches
, that can be used to
limit the amount of kernel memory consumed by the
inotify
interface. For
further details, see inotify(7).
/proc/sys/fs/lease-break-time
This file specifies the grace period that the kernel grants to a process holding a file lease (fcntl(2)) after it has sent a signal to that process notifying it that another process is waiting to open the file. If the lease holder does not remove or downgrade the lease within this grace period, the kernel forcibly breaks the lease.
/proc/sys/fs/leases-enable
This file can be used to enable or disable file leases (fcntl(2)) on a system-wide basis. If this file contains the value 0, leases are disabled. A nonzero value enables leases.
/proc/sys/fs/mqueue
(since Linux
2.6.6)This directory contains files msg_max
, msgsize_max
, and queues_max
, controlling the resources
used by POSIX message queues. See mq_overview(7) for
details.
/proc/sys/fs/overflowgid and
/proc/sys/fs/overflowuid
These files allow you to change the value of the fixed UID and GID. The default is 65534. Some filesystems support only 16-bit UIDs and GIDs, although in Linux UIDs and GIDs are 32 bits. When one of these filesystems is mounted with writes enabled, any UID or GID that would exceed 65535 is translated to the overflow value before being written to disk.
/proc/sys/fs/pipe-max-size
(since Linux
2.6.35)The value in this file defines an upper limit for
raising the capacity of a pipe using the fcntl(2) F_SETPIPE_SZ
operation. This limit
applies only to unprivileged processes. The default
value for this file is 1,048,576. The value assigned to
this file may be rounded upward, to reflect the value
actually employed for a convenient implementation. To
determine the rounded-up value, display the contents of
this file after assigning a value to it. The minimum
value that can be assigned to this file is the system
page size.
/proc/sys/fs/protected_hardlinks
(since
Linux 3.6)When the value in this file is 0, no restrictions are placed on the creation of hard links (i.e., this is the historical behaviour before Linux 3.6). When the value in this file is 1, a hard link can be created to a target file only if one of the following conditions is true:
The caller has the
CAP_FOWNER
capability.The filesystem UID of the process creating the link matches the owner (UID) of the target file (as described in credentials(7), a process's filesystem UID is normally the same as its effective UID).
All of the following conditions are true:
the target is a regular file;
the target file does not have its set-user-ID permission bit enabled;
the target file does not have both its set-group-ID and group-executable permission bits enabled; and
the caller has permission to read and write the target file (either via the file's permissions mask or because it has suitable capabilities).
The default value in this file is 0. Setting the
value to 1 prevents a longstanding class of security
issues caused by hard-link-based time-of-check,
time-of-use races, most commonly seen in world-writable
directories such as /tmp
.
The common method of exploiting this flaw is to cross
privilege boundaries when following a given hard link
(i.e., a root process follows a hard link created by
another user). Additionally, on systems without
separated partitions, this stops unauthorized users
from "pinning" vulnerable set-user-ID and set-group-ID
files against being upgraded by the administrator, or
linking to special files.
/proc/sys/fs/protected_symlinks
(since
Linux 3.6)When the value in this file is 0, no restrictions are placed on following symbolic links (i.e., this is the historical behaviour before Linux 3.6). When the value in this file is 1, symbolic links are followed only in the following circumstances:
the filesystem UID of the process following the link matches the owner (UID) of the symbolic link (as described in credentials(7), a process's filesystem UID is normally the same as its effective UID);
the link is not in a sticky world-writable directory; or
the symbolic link and and its parent directory have the same owner (UID)
A system call that fails to follow a symbolic link
because of the above restrictions returns the error
EACCES in errno
.
The default value in this file is 0. Setting the value to 1 avoids a longstanding class of security issues based on time-of-check, time-of-use races when accessing symbolic links.
/proc/sys/fs/suid_dumpable
(since Linux
2.6.13)The value in this file determines whether core dump files are produced for set-user-ID or otherwise protected/tainted binaries. Three different integer values can be specified:
- 0 (default)
This provides the traditional (pre-Linux 2.6.13) behavior. A core dump will not be produced for a process which has changed credentials (by calling seteuid(2), setgid(2), or similar, or by executing a set-user-ID or set-group-ID program) or whose binary does not have read permission enabled.
- 1 ("debug")
All processes dump core when possible. The core dump is owned by the filesystem user ID of the dumping process and no security is applied. This is intended for system debugging situations only. Ptrace is unchecked.
- 2 ("suidsafe")
Any binary which normally would not be dumped (see "0" above) is dumped readable by root only. This allows the user to remove the core dump file but not to read it. For security reasons core dumps in this mode will not overwrite one another or other files. This mode is appropriate when administrators are attempting to debug problems in a normal environment.
Additionally, since Linux 3.6,
/proc/sys/kernel/core_pattern
must either be an absolute pathname or a pipe command, as detailed in core(5). Warnings will be written to the kernel log ifcore_pattern
does not follow these rules, and no core dump will be produced.
/proc/sys/fs/super-max
This file controls the maximum number of
superblocks, and thus the maximum number of mounted
filesystems the kernel can have. You need increase only
super-max
if
you need to mount more filesystems than the current
value in super-max
allows you
to.
/proc/sys/fs/super-nr
This file contains the number of filesystems currently mounted.
/proc/sys/kernel
This directory contains files controlling a range of kernel parameters, as described below.
/proc/sys/kernel/acct
This file contains three numbers: highwater
, lowwater
, and frequency
. If BSD-style process
accounting is enabled these values control its
behavior. If free space on filesystem where the log
lives goes below lowwater
percent accounting suspends. If free space gets above
highwater
percent
accounting resumes. frequency
determines how often the
kernel checks the amount of free space (value is in
seconds). Default values are 4, 2 and 30. That is,
suspend accounting if 2% or less space is free; resume
it if 4% or more space is free; consider information
about amount of free space valid for 30 seconds.
/proc/sys/kernel/cap_last_cap
(since
Linux 3.2)See capabilities(7).
/proc/sys/kernel/cap-bound (from Linux 2.2 to
2.6.24)
This file holds the value of the kernel capability bounding set (expressed as a signed decimal number). This set is ANDed against the capabilities permitted to a process during execve(2). Starting with Linux 2.6.25, the system-wide capability bounding set disappeared, and was replaced by a per-thread bounding set; see capabilities(7).
/proc/sys/kernel/core_pattern
See core(5).
/proc/sys/kernel/core_uses_pid
See core(5).
/proc/sys/kernel/ctrl-alt-del
This file controls the handling of Ctrl-Alt-Del from the keyboard. When the value in this file is 0, Ctrl-Alt-Del is trapped and sent to the init(8) program to handle a graceful restart. When the value is greater than zero, Linux's reaction to a Vulcan Nerve Pinch (tm) will be an immediate reboot, without even syncing its dirty buffers. Note: when a program (like dosemu) has the keyboard in "raw" mode, the ctrl-alt-del is intercepted by the program before it ever reaches the kernel tty layer, and it's up to the program to decide what to do with it.
/proc/sys/kernel/dmesg_restrict
(since
Linux 2.6.37)The value in this file determines who can see kernel
syslog contents. A value of 0 in this file imposes no
restrictions. If the value is 1, only privileged users
can read the kernel syslog. (See syslog(2) for more
details.) Since Linux 3.4, only users with the
CAP_SYS_ADMIN
capability
may change the value in this file.
/proc/sys/kernel/domainname and
/proc/sys/kernel/hostname
can be used to set the NIS/YP domainname and the hostname of your box in exactly the same way as the commands domainname(1) and hostname(1), that is:
# echo 'darkstar' > /proc/sys/kernel/hostname # echo 'mydomain' > /proc/sys/kernel/domainname
has the same effect as
# hostname 'darkstar' # domainname 'mydomain'
Note, however, that the classic darkstar.frop.org has the hostname "darkstar" and DNS (Internet Domain Name Server) domainname "frop.org", not to be confused with the NIS (Network Information Service) or YP (Yellow Pages) domainname. These two domain names are in general different. For a detailed discussion see the hostname(1) man page.
/proc/sys/kernel/hotplug
This file contains the path for the hotplug policy
agent. The default value in this file is /sbin/hotplug
.
/proc/sys/kernel/htab-reclaim
(PowerPC only) If this file is set to a nonzero
value, the PowerPC htab (see kernel file Documentation/powerpc/ppc_htab.txt
)
is pruned each time the system hits the idle loop.
/proc/sys/kernel/kptr_restrict
(since
Linux 2.6.38)The value in this file determines whether kernel
addresses are exposed via /proc
files and other interfaces. A
value of 0 in this file imposes no restrictions. If the
value is 1, kernel pointers printed using the
%pK
format
specifier will be replaced with zeros unless the user
has the CAP_SYSLOG
capability. If the value is 2, kernel pointers printed
using the %pK
format specifier will be replaced with zeros regardless
of the user's capabilities. The initial default value
for this file was 1, but the default was changed to 0
in Linux 2.6.39. Since Linux 3.4, only users with the
CAP_SYS_ADMIN
capability
can change the value in this file.
/proc/sys/kernel/l2cr
(PowerPC only) This file contains a flag that controls the L2 cache of G3 processor boards. If 0, the cache is disabled. Enabled if nonzero.
/proc/sys/kernel/modprobe
This file contains the path for the kernel module
loader. The default value is /sbin/modprobe
. The file is present
only if the kernel is built with the CONFIG_MODULES
(CONFIG_KMOD
in Linux 2.6.26 and
earlier) option enabled. It is described by the Linux
kernel source file Documentation/kmod.txt
(present only
in kernel 2.4 and earlier).
/proc/sys/kernel/modules_disabled
(since Linux 2.6.31)A toggle value indicating if modules are allowed to
be loaded in an otherwise modular kernel. This toggle
defaults to off (0), but can be set true (1). Once
true, modules can be neither loaded nor unloaded, and
the toggle cannot be set back to false. The file is
present only if the kernel is built with the
CONFIG_MODULES
option
enabled.
/proc/sys/kernel/msgmax
This file defines a system-wide limit specifying the maximum number of bytes in a single message written on a System V message queue.
/proc/sys/kernel/msgmni
(since Linux
2.4)This file defines the system-wide limit on the number of message queue identifiers.
/proc/sys/kernel/msgmnb
This file defines a system-wide parameter used to
initialize the msg_qbytes
setting for subsequently created message queues. The
msg_qbytes
setting
specifies the maximum number of bytes that may be
written to the message queue.
/proc/sys/kernel/ostype and
/proc/sys/kernel/osrelease
These files give substrings of /proc/version
.
/proc/sys/kernel/overflowgid and
/proc/sys/kernel/overflowuid
These files duplicate the files /proc/sys/fs/overflowgid
and
/proc/sys/fs/overflowuid
.
/proc/sys/kernel/panic
This file gives read/write access to the kernel
variable panic_timeout
. If
this is zero, the kernel will loop on a panic; if
nonzero it indicates that the kernel should autoreboot
after this number of seconds. When you use the software
watchdog device driver, the recommended setting is
60.
/proc/sys/kernel/panic_on_oops
(since
Linux 2.5.68)This file controls the kernel's behavior when an
oops or BUG is encountered. If this file contains 0,
then the system tries to continue operation. If it
contains 1, then the system delays a few seconds (to
give klogd time to record the oops output) and then
panics. If the /proc/sys/kernel/panic
file is also
nonzero then the machine will be rebooted.
/proc/sys/kernel/pid_max
(since Linux
2.5.34)This file specifies the value at which PIDs wrap
around (i.e., the value in this file is one greater
than the maximum PID). The default value for this file,
32768, results in the same range of PIDs as on earlier
kernels. On 32-bit platforms, 32768 is the maximum
value for pid_max
. On
64-bit systems, pid_max
can be set to any value up to 2^22 (PID_MAX_LIMIT
, approximately 4
million).
/proc/sys/kernel/powersave-nap (PowerPC
only)
This file contains a flag. If set, Linux-PPC will use the "nap" mode of powersaving, otherwise the "doze" mode will be used.
/proc/sys/kernel/printk
The four values in this file are console_loglevel
, default_message_loglevel
, minimum_console_level
, and
default_console_loglevel
.
These values influence printk
() behavior when printing or
logging error messages. See syslog(2) for more
info on the different loglevels. Messages with a higher
priority than console_loglevel
will be printed to
the console. Messages without an explicit priority will
be printed with priority default_message_level
. minimum_console_loglevel
is the
minimum (highest) value to which console_loglevel
can be set.
default_console_loglevel
is the default value for console_loglevel
.
/proc/sys/kernel/pty
(since Linux
2.6.4)This directory contains two files relating to the number of UNIX 98 pseudoterminals (see pts(4)) on the system.
/proc/sys/kernel/pty/max
This file defines the maximum number of pseudoterminals.
/proc/sys/kernel/pty/nr
This read-only file indicates how many pseudoterminals are currently in use.
/proc/sys/kernel/random
This directory contains various parameters
controlling the operation of the file /dev/random
. See random(4) for further
information.
/proc/sys/kernel/real-root-dev
This file is documented in the Linux kernel source
file Documentation/initrd.txt
.
/proc/sys/kernel/reboot-cmd (Sparc
only)
This file seems to be a way to give an argument to the SPARC ROM/Flash boot loader. Maybe to tell it what to do after rebooting?
/proc/sys/kernel/rtsig-max
(Only in kernels up to and including 2.6.7; see setrlimit(2)) This file can be used to tune the maximum number of POSIX real-time (queued) signals that can be outstanding in the system.
/proc/sys/kernel/rtsig-nr
(Only in kernels up to and including 2.6.7.) This file shows the number POSIX real-time signals currently queued.
/proc/sys/kernel/sched_rr_timeslice_ms
(since Linux 3.9)/proc/sys/kernel/sem
(since Linux
2.4)This file contains 4 numbers defining limits for System V IPC semaphores. These fields are, in order:
SEMMSL
The maximum semaphores per semaphore set.
SEMMNS
A system-wide limit on the number of semaphores in all semaphore sets.
SEMOPM
The maximum number of operations that may be specified in a semop(2) call.
SEMMNI
A system-wide limit on the maximum number of semaphore identifiers.
/proc/sys/kernel/sg-big-buff
This file shows the size of the generic SCSI device
(sg) buffer. You can't tune it just yet, but you could
change it at compile time by editing include/scsi/sg.h
and changing the
value of SG_BIG_BUFF
.
However, there shouldn't be any reason to change this
value.
/proc/sys/kernel/shm_rmid_forced
(since
Linux 3.1)If this file is set to 1, all System V shared memory segments will be marked for destruction as soon as the number of attached processes falls to zero; in other words, it is no longer possible to create shared memory segments that exist independently of any attached process.
The effect is as though a shmctl(2)
IPC_RMID
is performed on
all existing segments as well as all segments created
in the future (until this file is reset to 0). Note
that existing segments that are attached to no process
will be immediately destroyed when this file is set to
1. Setting this option will also destroy segments that
were created, but never attached, upon termination of
the process that created the segment with shmget(2).
Setting this file to 1 provides a way of ensuring
that all System V shared memory segments are counted
against the resource usage and resource limits (see the
description of RLIMIT_AS
in getrlimit(2)) of at
least one process.
Because setting this file to 1 produces behavior that is nonstandard and could also break existing applications, the default value in this file is 0. Only set this file to 1 if you have a good understanding of the semantics of the applications using System V shared memory on your system.
/proc/sys/kernel/shmall
This file contains the system-wide limit on the total number of pages of System V shared memory.
/proc/sys/kernel/shmmax
This file can be used to query and set the run-time
limit on the maximum (System V IPC) shared memory
segment size that can be created. Shared memory
segments up to 1GB are now supported in the kernel.
This value defaults to SHMMAX
.
/proc/sys/kernel/shmmni
(since Linux
2.4)This file specifies the system-wide maximum number of System V shared memory segments that can be created.
/proc/sys/kernel/sysrq
This file controls the functions allowed to be invoked by the SysRq key. By default, the file contains 1 meaning that every possible SysRq request is allowed (in older kernel versions, SysRq was disabled by default, and you were required to specifically enable it at run-time, but this is not the case any more). Possible values in this file are:
0 - disable sysrq completely 1 - enable all functions of sysrq >1 - bit mask of allowed sysrq functions, as follows: 2 - enable control of console logging level 4 - enable control of keyboard (SAK, unraw) 8 - enable debugging dumps of processes etc. 16 - enable sync command 32 - enable remount read-only 64 - enable signalling of processes (term, kill, oom-kill) 128 - allow reboot/poweroff 256 - allow nicing of all real-time tasks
This file is present only if the CONFIG_MAGIC_SYSRQ
kernel
configuration option is enabled. For further details
see the Linux kernel source file Documentation/sysrq.txt
.
/proc/sys/kernel/version
This file contains a string like:
#5 Wed Feb 25 21:49:24 MET 1998
The "#5" means that this is the fifth kernel built from this source base and the date behind it indicates the time the kernel was built.
/proc/sys/kernel/threads-max
(since
Linux 2.3.11)This file specifies the system-wide limit on the number of threads (tasks) that can be created on the system.
/proc/sys/kernel/zero-paged (PowerPC
only)
This file contains a flag. When enabled (nonzero), Linux-PPC will pre-zero pages in the idle loop, possibly speeding up get_free_pages.
/proc/sys/net
This directory contains networking stuff. Explanations for some of the files under this directory can be found in tcp(7) and ip(7).
/proc/sys/net/core/somaxconn
This file defines a ceiling value for the
backlog
argument of
listen(2); see the
listen(2) manual page
for details.
/proc/sys/proc
This directory may be empty.
/proc/sys/sunrpc
This directory supports Sun remote procedure call for network filesystem (NFS). On some systems, it is not present.
/proc/sys/vm
This directory contains files for memory management tuning, buffer and cache management.
/proc/sys/vm/drop_caches
(since Linux
2.6.16)Writing to this file causes the kernel to drop clean caches, dentries, and inodes from memory, causing that memory to become free. This can be useful for memory management testing and performing reproducible filesystem benchmarks. Because writing to this file causes the benefits of caching to be lost, it can degrade overall system performance.
To free pagecache, use:
echo 1 > /proc/sys/vm/drop_caches
To free dentries and inodes, use:
echo 2 > /proc/sys/vm/drop_caches
To free pagecache, dentries and inodes, use:
echo 3 > /proc/sys/vm/drop_caches
Because writing to this file is a nondestructive operation and dirty objects are not freeable, the user should run sync(8) first.
/proc/sys/vm/legacy_va_layout
(since
Linux 2.6.9)If nonzero, this disables the new 32-bit memory-mapping layout; the kernel will use the legacy (2.4) layout for all processes.
/proc/sys/vm/memory_failure_early_kill
(since Linux 2.6.32)Control how to kill processes when an uncorrected memory error (typically a 2-bit error in a memory module) that cannot be handled by the kernel is detected in the background by hardware. In some cases (like the page still having a valid copy on disk), the kernel will handle the failure transparently without affecting any applications. But if there is no other up-to-date copy of the data, it will kill processes to prevent any data corruptions from propagating.
The file has one of the following values:
1:
Kill all processes that have the corrupted-and-not-reloadable page mapped as soon as the corruption is detected. Note this is not supported for a few types of pages, like kernel internally allocated data or the swap cache, but works for the majority of user pages.
0:
Only unmap the corrupted page from all processes and kill only a process that tries to access it.
The kill is performed using a SIGBUS
signal with si_code
set to BUS_MCEERR_AO
. Processes can handle
this if they want to; see sigaction(2) for more
details.
This feature is active only on architectures/platforms with advanced machine check handling and depends on the hardware capabilities.
Applications can override the memory_failure_early_kill
setting
individually with the prctl(2) PR_MCE_KILL
operation.
Only present if the kernel was configured with
CONFIG_MEMORY_FAILURE
.
/proc/sys/vm/memory_failure_recovery
(since Linux 2.6.32)Enable memory failure recovery (when supported by the platform)
1:
Attempt recovery.
0:
Always panic on a memory failure.
Only present if the kernel was configured with
CONFIG_MEMORY_FAILURE
.
/proc/sys/vm/oom_dump_tasks
(since
Linux 2.6.25)Enables a system-wide task dump (excluding kernel
threads) to be produced when the kernel performs an
OOM-killing. The dump includes the following
information for each task (thread, process): thread ID,
real user ID, thread group ID (process ID), virtual
memory size, resident set size, the CPU that the task
is scheduled on, oom_adj score (see the description of
/proc/[pid]/oom_adj
), and
command name. This is helpful to determine why the
OOM-killer was invoked and to identify the rogue task
that caused it.
If this contains the value zero, this information is suppressed. On very large systems with thousands of tasks, it may not be feasible to dump the memory state information for each one. Such systems should not be forced to incur a performance penalty in OOM situations when the information may not be desired.
If this is set to nonzero, this information is shown whenever the OOM-killer actually kills a memory-hogging task.
The default value is 0.
/proc/sys/vm/oom_kill_allocating_task
(since Linux 2.6.24)This enables or disables killing the OOM-triggering task in out-of-memory situations.
If this is set to zero, the OOM-killer will scan through the entire tasklist and select a task based on heuristics to kill. This normally selects a rogue memory-hogging task that frees up a large amount of memory when killed.
If this is set to nonzero, the OOM-killer simply kills the task that triggered the out-of-memory condition. This avoids a possibly expensive tasklist scan.
If /proc/sys/vm/panic_on_oom
is nonzero,
it takes precedence over whatever value is used in
/proc/sys/vm/oom_kill_allocating_task
.
The default value is 0.
/proc/sys/vm/overcommit_memory
This file contains the kernel virtual memory accounting mode. Values are:
0: heuristic overcommit (this is the default)
1: always overcommit, never check
2: always check, never overcommit
In mode 0, calls of mmap(2) with
MAP_NORESERVE
are not
checked, and the default check is very weak, leading to
the risk of getting a process "OOM-killed". Under Linux
2.4 any nonzero value implies mode 1. In mode 2
(available since Linux 2.6), the total virtual address
space on the system is limited to (SS + RAM*(r/100)),
where SS is the size of the swap space, and RAM is the
size of the physical memory, and r is the contents of
the file /proc/sys/vm/overcommit_ratio
.
/proc/sys/vm/overcommit_ratio
See the description of /proc/sys/vm/overcommit_memory
.
/proc/sys/vm/panic_on_oom
(since Linux
2.6.18)This enables or disables a kernel panic in an out-of-memory situation.
If this file is set to the value 0, the kernel's OOM-killer will kill some rogue process. Usually, the OOM-killer is able to kill a rogue process and the system will survive.
If this file is set to the value 1, then the kernel
normally panics when out-of-memory happens. However, if
a process limits allocations to certain nodes using
memory policies (mbind(2) MPOL_BIND
) or cpusets (cpuset(7)) and those
nodes reach memory exhaustion status, one process may
be killed by the OOM-killer. No panic occurs in this
case: because other nodes' memory may be free, this
means the system as a whole may not have reached an
out-of-memory situation yet.
If this file is set to the value 2, the kernel always panics when an out-of-memory condition occurs.
The default value is 0. 1 and 2 are for failover of clustering. Select either according to your policy of failover.
/proc/sys/vm/swappiness
The value in this file controls how aggressively the kernel will swap memory pages. Higher values increase aggressiveness, lower values decrease aggressiveness. The default value is 60.
/proc/sysrq-trigger
(since Linux
2.4.21)Writing a character to this file triggers the same
SysRq function as typing ALT-SysRq-<character>
(see the description of /proc/sys/kernel/sysrq
). This file is
normally writable only by root
. For further details see the
Linux kernel source file Documentation/sysrq.txt
.
/proc/sysvipc
Subdirectory containing the pseudo-files
msg
, sem
and shm
. These files list the System V
Interprocess Communication (IPC) objects (respectively:
message queues, semaphores, and shared memory) that
currently exist on the system, providing similar
information to that available via ipcs(1). These files
have headers and are formatted (one IPC object per
line) for easy understanding. svipc(7) provides
further background on the information shown by these
files.
/proc/tty
Subdirectory containing the pseudo-files and subdirectories for tty drivers and line disciplines.
/proc/uptime
This file contains two numbers: the uptime of the system (seconds), and the amount of time spent in idle process (seconds).
/proc/version
This string identifies the kernel version that is
currently running. It includes the contents of
/proc/sys/kernel/ostype
,
/proc/sys/kernel/osrelease
and
/proc/sys/kernel/version
.
For example:
Linux version 1.0.9 (quinlan@phaze) #1 Sat May 14 01:51:54 EDT 1994
/proc/vmstat
(since Linux
2.6)This file displays various virtual memory statistics.
/proc/zoneinfo
(since Linux
2.6.13)This file display information about memory zones. This is useful for analyzing virtual memory behavior.
Many strings (i.e., the environment and command line) are in the internal format, with subfields terminated by null bytes ('\0'), so you may find that things are more readable if you use od −c or tr"\000" "\n" to read them. Alternatively, echo `cat <file>` works well.
This manual page is incomplete, possibly inaccurate, and is the kind of thing that needs to be updated very often.
cat(1), dmesg(1), find(1), free(1), ps(1), tr(1), uptime(1), chroot(2), mmap(2), readlink(2), syslog(2), slabinfo(5), hier(7), time(7), arp(8), hdparm(8), ifconfig(8), init(8), lsmod(8), lspci(8), mount(8), netstat(8), procinfo(8), route(8), sysctl(8)
The Linux kernel source files: Documentation/filesystems/proc.txt
and
Documentation/sysctl/vm.txt
.
This page is part of release 3.54 of the Linux man-pages
project. A
description of the project, and information about reporting
bugs, can be found at
http://www.kernel.org/doc/man−pages/.
Copyright (C) 1994, 1995 by Daniel Quinlan (quinlanyggdrasil.com) and Copyright (C) 2002-2008 Michael Kerrisk <mtk.manpagesgmail.com> with networking additions from Alan Cox (A.Coxswansea.ac.uk) and scsi additions from Michael Neuffer (neuffermail.uni-mainz.de) and sysctl additions from Andries Brouwer (aebcwi.nl) and System V IPC (as well as various other) additions from Michael Kerrisk <mtk.manpagesgmail.com> %%%LICENSE_START(GPLv2+_DOC_FULL) This is free documentation; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The GNU General Public License's references to "object code" and "executables" are to be interpreted as the output of any document formatting or typesetting system, including intermediate and printed output. This manual is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this manual; if not, see <http://www.gnu.org/licenses/>. %%%LICENSE_END Modified 1995-05-17 by faithcs.unc.edu Minor changes by aeb and Marty Leisner (leisnersdsp.mc.xerox.com). Modified 1996-04-13, 1996-07-22 by aebcwi.nl Modified 2001-12-16 by rwhronearthlink.net Modified 2002-07-13 by jbeltonshaw.ca Modified 2002-07-22, 2003-05-27, 2004-04-06, 2004-05-25 by Michael Kerrisk <mtk.manpagesgmail.com> 2004-11-17, mtk -- updated notes on /proc/loadavg 2004-12-01, mtk, rtsig-max and rtsig-nr went away in 2.6.8 2004-12-14, mtk, updated 'statm', and fixed error in order of list 2005-05-12, mtk, updated 'stat' 2005-07-13, mtk, added /proc/sys/fs/mqueue/* 2005-09-16, mtk, Added /proc/sys/fs/suid_dumpable 2005-09-19, mtk, added /proc/zoneinfo 2005-03-01, mtk, moved /proc/sys/fs/mqueue/* material to mq_overview.7. 2008-06-05, mtk, Added /proc/[pid]/oom_score, /proc/[pid]/oom_adj, /proc/[pid]/limits, /proc/[pid]/mountinfo, /proc/[pid]/mountstats, and /proc/[pid]/fdinfo/*. 2008-06-19, mtk, Documented /proc/[pid]/status. 2008-07-15, mtk, added /proc/config.gz FIXME 2.6.13 seems to have /proc/vmcore implemented in the source code, but there is no option available under 'make xconfig'; eventually this should be fixed, and then info from the patch-2.6.13 and change log could be used to write an entry in this man page. Needs CONFIG_VMCORE FIXME cross check against Documentation/filesystems/proc.txt to see what information could be imported from that file into this file. |